skip to main content


Search for: All records

Creators/Authors contains: "Khan, M Javed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 25, 2024
  2. null (Ed.)
    The COVID-19 pandemic forced the move from a traditional face-to-face classroom to a remote learning model. The success of the remote learning model is contingent upon several factors including appropriate learning materials. Instructors who were entrenched in the face-to-face teaching method had to make rapid adjustments to deliver learning materials and to engage students remotely. In contrast, instructors who had been using techniques to prepare students virtually before class time meeting were better positioned to pivot to the remote learning approach. The techniques and the materials developed by faculty from mathematics and aerospace engineering at an HBCU for effectively engaging students which include virtual pre class preparation were adapted for the remote learning method during this pandemic. These techniques and materials were made available to faculty to assist their move from face-to-face to remote learning. The approach is shared in this paper. Math and aerospace engineering students’ satisfaction with the approach was measured and the results are also included in this paper. 
    more » « less
  3. Deep learning is the result of cognitive engagement with the learning materials. Various strategies have been proposed for promoting cognitive engagement during the learning process. One such strategy is active learning which is an essential element for student engagement to foster deeper learning leading to academic success. However, time limitation of the classroom is a major obstacle in implementing active learning. One solution is the use of the flipped teaching and learning methodology. This paper provides details of strategies to promote engagement and deeper learning in lower level math and aerospace engineering courses at a Historically Black College and University (HBCU). Data on students’ motivation and self-regulation was collected using the validated instrument, Motivated Strategies for Learning Questionnaire (MSLQ). Results of the analysis and best practices impacting students’ academic performance are shared in this paper. The work is supported by NSF Grant# 1712156. 
    more » « less
  4. This paper will provide the first-year results of the impact of implementing the flipped approach in lower level math and aerospace engineering courses. A quasi-experimental between-groups research design was used for assessing the effectiveness of this methodology. The control group consisted of students who were in the same course but in sections with traditional teaching delivery while the intervention group consisted of students who were registered in the sections with the flipped approach. All students were from underrepresented groups. A positive impact on the students’ attitudes and learning strategies was observed as a result of the flipped classroom with active learning. Data pertaining to the effectiveness of the flipped classroom pedagogy is shared in this paper. Analysis of students’ cognitive engagement and their attitudes towards flipped classroom is discussed. The paper also includes best practices, their impact on student performance, and challenges in implementing a flipped classroom pedagogy. 
    more » « less
  5. null (Ed.)